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ABSTRACT 
 

Image denoising is a common procedure in digital image processing aiming at the 
removal of noise, which may corrupt an image during its acquisition or transmission, 
while retaining its quality. This procedure is traditionally performed in the spatial or 
frequency domain by filtering. Recently, a lot of methods have been reported that 
perform denoising on the Discrete Wavelet Transform (DWT) domain. The transform 
coefficients within the subbands of a DWT can be locally modeled as i.i.d 
(independent identically distributed) random variables with Generalized Gaussian 
distribution. Some of the denoising algorithms perform thresholding of the wavelet 
coefficients, which have been affected by additive white Gaussian noise, by retaining 
only large coefficients and setting the rest to zero. However, their performance is not 
sufficiently effective as they are not spatially adaptive. Some other methods evaluate 
the denoised coefficients by an MMSE (Minimum Mean Square Error) estimator, in 
terms of the noised coefficients and the variances of signal and noise. The signal 
variance is locally estimated by a ML (Maximum Likelihood) or a MAP (Maximum 
A Posteriori) estimator in small regions for every subband where variance is assumed 
practically constant. These methods present effective results but their spatial 
adaptivity is not well suited near object edges where the variance field is not smoothly 
varied. The optimality of the selected regions where the estimators apply has been 
examined in some research works.  

This paper evaluates some of the wavelet domain algorithms as far as their 
subjective or objective quality performance is concerned and examines some 
improvements.  
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1. INTRODUCTION 
 

An image is often corrupted by noise during its acquisition or transmission. Image 
denoising is used to remove the additive noise while retaining as much as possible the 
important image features. In the recent years there has been a fair amount of research 
on filtering and wavelet coefficients thresholding, because wavelets provide an 
appropriate basis for separating noisy signal from the image signal. These wavelet-
based methods mainly rely on thresholding the Discrete Wavelet Transform (DWT) 
coefficients, which have been affected by Additive White Gaussian Noise (AWGN).  



Since the work of Donoho and Johnstone [1]-[4], there has been a lot of research 
on the way of defining the threshold levels and their type (i.e. hard or soft threshold). 
These algorithms usually perform global thresholding of wavelet coefficients by 
retaining only large coefficients and setting the rest to zero. Thus, they do not present 
spatial adaptivity and their performance in real life images is not sufficiently 
effective. 

A wide class of image processing algorithms is based on the DWT. The transform 
coefficients within the subbands can be locally modeled as independent identically 
distributed (i.i.d) random variables with Generalized Gaussian Distribution (GGD) 
[5]. In that sense, the denoised coefficients may be evaluated by an MMSE (Minimum 
Mean Square Error) estimator, in terms of the noised coefficients and the variances of 
signal and noise. The signal variance is locally estimated by a ML (Maximum 
Likelihood) estimator, whereas noise variance is estimated from the first level 
diagonal details. Therefore, the denoised coefficients are statistically estimated in 
small regions for every subband instead of applying a global threshold [6]. These 
methods present efficient results but their spatial adaptivity is not well suited near 
object edges where the variance field is not smoothly varied. In [7] a similar spatially 
adaptive model for wavelet image coefficients was used to perform image denoising 
via wavelet thresholding. In [8] the denoised coefficients are statistically estimated in 
a variable block size framework resulting in a quad-tree decomposition of subbands 
with respect to local variance. 

The present work evaluates the spatially adaptive model as in [6] which performs 
MMSE coefficient estimation rather than coefficient thresholding as in [7]. The 
estimation of the underlying variance field is performed in a fixed block size 
framework employing a ML estimator throughout all the detail subbands of the 
wavelet decomposition.  The fixed blocks are centered square-shaped windows, the 
size of which affects the estimation of the coefficient variance. The use of different 
size of window in each decomposition level for improved performance is also 
considered. The performance of this model with respect to other popular denoising 
algorithms, as far as reconstruction quality is concerned, is also examined. 

This paper is organized as follows. Section 2 is an overview of the denoising 
algorithms based on the statistical modeling of wavelet coefficients. The experimental 
results are presented in Section 3 and the conclusions are summarized in Section 4. 
 
 

2. OVERVIEW 
 

2.1 The statistical model 
 

The statistical model of the proposed denoising algorithm is illustrated in Fig. 1. A 
noise contaminated image may be formulated as in the shown block-diagram. A 
“clean” image, x, is decomposed by DWT providing the wavelet coefficients X(k). 
These coefficients, which may be locally considered as i.i.d GGD random variables 
with variance )(2 kXσ , are corrupted by additive i.i.d Gaussian noise samples, n(k), to 
produce the observed wavelet coefficients of the noisy image, Y(k). 

Let W and W-1 denote the two dimensional DWT and its inverse respectively. The 
relationship between image and transform coefficients is: 
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The “clean” coefficients, X, may be estimated from the observed coefficients, Y, if 
noise variance, 2

nσ  and image coefficient variance, )(2 kXσ  are known. Here, a robust 
median estimator of the highest subband diagonal coefficients (i.e. HH1) estimates the 
noise variance [2]. Also, a ML estimation of image coefficient variance, )(2 kXσ , is 
performed using the observed noisy data in small regions that are defined as variable 
size blocks across scales. Finally, an MMSE estimator provides an estimate of the 
“clean” coefficients, )(kX . The reconstructed denoised image is given by: 

                                                                   (2) 
 
2.2. The mathematical estimation 
 

It is known that the best estimate of a random variable x given by a MMSE 
estimator is: 

                              ][XEX =                                                        (3) 
Also, under the assumptions of independence and Gaussian distribution of the random 
variables, it is known that [9]: 
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The last equation describes the conditional distribution of the observed values when 
the “clean” values are known. The Bayesian estimation of the “clean” values given 
the observed values is: 
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If the Gaussian distributions are replaced by their explicit forms, equation (5) results 
in: 
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Fig. 1.  Block diagram of the denoising algorithm. The statistical model is based on 
a ML estimator for an estimate of the underlying variance and a MMSE 
estimator for the evaluation of the “clean” wavelet coefficients. 
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The estimated “clean” wavelet coefficients result by considering equations (3) and 
(6): 

                   )()(
22

2
kYkX

nX

X

σσ

σ

+
=                           (7) 

But in fact 2
Xσ  is not known, so we employ a ML estimator in order to have an  

estimate for a local neighborhood, 2
Xσ ,  where variance is assumed to be constant. 

The ML estimate is defined as: 
                                                      )|(maxarg)( | xyfyX XY
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In our case, this takes the following form: 
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where N  is the local neighborhood. The maximum of the above equation is found to 
be for: 
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where M represents the number of wavelet coefficients residing in the local 
neighborhood N. 
Therefore, the estimate of the “clean” coefficients variance is:                                 
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Finally, the “clean” coefficients are estimated combining (7) and (11): 
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where the noise variance is estimated, as it was stated in the previous subsection, by: 
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where Y(k) represent the coefficients of HH1 subband. 
 

3. EXPERIMENTAL RESULTS 
 

The experimental evaluation is performed on three grey scale images like “Lena”, 
“Barbara” and “Boat” of size 512×512 pixels at different noise levels. The wavelet 
transform employs Daubechies’s least asymmetric compactly supported wavelet with 
eight vanishing moments [10] at five levels of decomposition. The objective quality 
of the reconstructed image is measured by: 

                           ^ 
  ^ 
 
                     ^ 

^ 

^ 

^ 

^ 



^

                          
mse

PSNR
2

10
255log10=  dB                                       (14) 

where mse is the mean square error between the original  and the denoised image  
with size I×J: 
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The wavelet domain denoising algorithms compared are SureShrink [3], BayesShrink 
[7], NormalShrink [11], Wiener [12] and LAWML [6]. The first of the above 
mentioned methods is the hard-thresholding of wavelet coefficients using a constant 
threshold for all subbands that is estimated by a robust estimator from HH1 subband. 
The second method uses spatially adaptive wavelet thresholding. The third method 
employs the same principle as the previous one in order to estimate subband 
dependent threshold. The fourth method is based on the Wiener filter denoising 
algorithm and the last one employs the statistical modeling of wavelet coefficients in 
order to estimate the “clean” coefficients using the observed ones and estimating the 
underlying variance field in a local neighborhood. The PSNR of the various methods 
are compared in Table I and the best ones are highlighted with bold fonts. 
 

TABLE I 
 PSNR comparative results for various denoising methods considering various levels 

of noise strength. 
 

 SureShrink BayesShrink NormalShrink Wiener LAWML 

Lena 

σn=10 33.55 33.45 32.86 33.54 34.54 

σn=20 30.41 30.33 29.82 29.00 31.07 

σn=30 28.70 28.65 28.12 25.73 29.01 

Barbara 

σn=10 31.35 31.10 30.46 29.90 32.87 

σn=20 27.43 27.36 26.29 26.79 28.92 

σn=30 25.44 25.41 24.38 24.35 26.82 

Boat 

σn=10 31.86 31.90 30.87 31.71 32.65 

σn=20 28.49 28.43 27.62 28.19 29.21 

σn=30 26.68 26.64 26.01 25.28 27.20 
 
It is apparent that LAWML algorithm, which in Table I has been considered with 
blocks of size 7×7, outperforms all other methods. The size of blocks is unique for all 
the subbands and its optimum value is image dependent. Table II illustrates the 
objective quality of LAWML with blocks of size 7×7 compared with variable size 
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blocks in each decomposition level. In this case, the size of blocks from the finest to 
the coarsest level is considered to be 11×11, 9×9, 7×7, 5×5, 3×3 respectively. 
 

TABLE II 
 PSNR comparative results of LAWML denoising algorithm when fixed or variable 

window size is considered. 
 

 LAWML 
 (fixed size block) 

LAWML 
(variable size block) 

Lena 

σn=10 34.54 34.54 

σn=20 31.03 31.22 

σn=30 29.04 29.38 

Barbara 

σn=10 32.85 32.69 

σn=20 28.97 28.94 

σn=30 26.78 26.88 

Boat 

σn=10 32.67 32.55 

σn=20 29.20 29.22 

σn=30 27.18 27.32 
 
The above results show that the efficiency of LAWML method can be improved if a 
variable block size scheme across the levels of wavelet decomposition is employed. 
The optimum size of blocks depends on the noise level and the input image. Its 
adaptivity to these factors can be the objective of a future research work. 
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Fig. 2 shows the subjective quality of all the examined methods for “Lena” image, 

which is affected with noise of σn=30. It is obvious that LAWML method performs 
better denoising than the other methods and provides a more pleasant image quality in 
a strong additive noise environment.  

Fig. 3 shows the subjective quality of the two best methods, which are SureShrink 
and LAWML with variable block size across the decomposition levels, for 
“Barbara”.The noise standard deviation is set again to σn=30. The reconstructed 
images have been magnified in order to observe differences around a region that 
contains low and high texture areas. It may be observed that LAWML with variable 

                                (c)                                                                  (d) 

                                (e)                                                                  (f) 

Fig. 2.  Subjective quality performance comparison for noise standard deviation σn=30.  
           (a) Noisy image; (b) SureShrink; (c) BayesShrink; (d) NormalShrink;               
 (e) Wiener filter; (f) LAWML (block size 7×7) 



block size performs better than SureShrink around the kerchief stripes of “Barbara” as 
well as around her face, where the reconstructed image has smoother texture.  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

4. CONCLUSIONS 
 

In this paper, various methods are evaluated for recovering an image from noise 
contamination effectively. They are based on the discrete wavelet decomposition of 
the image and the Generalized Gaussian Distribution modeling of the subband 
coefficients. The most effective method is proved to be LAWML that employs a 
spatially adaptive model performing MMSE coefficient estimation instead of the 
classical threshold estimation. The proposed algorithm segments the subbands into 
blocks of fixed size and estimates the variance in each block assuming that it is 
smoothly varying in a local neighborhood. The noise variance is estimated by the 
robust estimator used by SureShrink method. Finally, the “clean” coefficients are 
estimated by a MMSE estimator and the “clean” image is recovered by an inverse 
wavelet transform. The use of variable size blocks across the levels of the wavelet 
decomposition may improve the performance of the specific algorithm, but the 
optimum choice needs further research.  
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                                (a)                                                                  (b) 

Fig. 3.  Subjective quality performance comparison for noise standard deviation σn=30.  
           (a) SureShrink; (b) LAWML (variable block size) 
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